29 resultados para immune

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Innate immune recognition of extracellular host-derived self-DNA and self-RNA is prevented by endosomal seclusion of the Toll-like receptors (TLRs) in the dendritic cells (DCs). However, in psoriasis plasmacytoid dendritic cells have been found to be able to sense self-DNA molecules in complex with the endogenous cationic antimicrobial peptide LL37, which are internalized into the endosomal compartments and thus can access TLR9. We investigated whether this endogenous peptide can also interact with extracellular self-RNA and lead to DC activation. We found that LL37 binds self-RNA as well as self-DNA going into an electrostatic interaction; forms micro-aggregates of nano-scale particles protected from enzymatic degradation and transport it into the endosomal compartments of both plasmacytoid and myeloid dendritic cells. In the plasmacytoid DCs, the self-RNA-LL37 complexes activate TLR7 and like the self-DNA-LL37 complexes, trigger the production of IFN-α in the absence of induction of maturation or production of IL-6 and TNF-α. In contrast to the self-DNA-LL37 complexes, the self-RNA-LL37 complexes are also internalized into the endosomal compartments of myeloid dendritic cells and trigger activation through TLR8, leading to the production of TNF-α and IL-6, and the maturation of the myeloid DCs. Furthermore, we found that these self nucleic acid-LL37 complexes can be found in vivo in the skin lesions of the cutaneous autoimmune disease psoriasis, where they are associated with mature mDCs in situ. On the other hand, in the systemic autoimmune disease systemic lupus erythematosus, self-DNA-LL37 complexes were found to be a constituent of the circulating immune complexes isolated from patient sera. This interaction between the endogenous peptide with the self nucleic acid molecules present in the immune complexes was found to be electrostatic and it confers resistance to enzymatic degradation of the nucleic acid molecules in the immune complexes. Moreover, autoantibodies to these endogenous peptides were found to trigger neutrophil activation and release of neutrophil extracellular traps composed of DNA, which are potential sources of the self nucleic acid-LL37 complexes present in SLE immune complexes. Our results demonstrate that the cationic antimicrobial peptide LL37 drives the innate immune recognition of self nucleic acid molecules through toll-like receptors in human dendritic cells, thus elucidating a pathway for innate sensing of host cell death. This pathway of autoreactivity was found to be pathologically relevant in human autoimmune diseases psoriasis and SLE, and thus this study provides new insights into the mechanisms autoimmune diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Psoralen plus UVA (PUVA) is used as a very effective treatment modality for various diseases, including psoriasis and cutaneous T-cell lymphoma. PUVA-induced immune suppression and/or apoptosis are thought to be responsible for the therapeutic action. However, the molecular mechanisms by which PUVA acts are not well understood. We have previously identified platelet-activating factor (PAF), a potent phospholipid mediator, as a crucial substance triggering ultraviolet B radiation-induced immune suppression. In this study, we used PAF receptor knockout mice, a selective PAF receptor antagonist, a COX-2 inhibitor (presumably blocking downstream effects of PAF), and PAF-like molecules to test the role of PAF receptor binding in PUVA treatment. We found that activation of the PAF pathway is crucial for PUVA-induced immune suppression (as measured by suppression of delayed type hypersensitivity to Candida albicans) and that it plays a role in skin inflammation and apoptosis. Downstream of PAF, interleukin-10 was involved in PUVA-induced immune suppression but not inflammation. Better understanding of PUVA's mechanisms may offer the opportunity to dissect the therapeutic from the detrimental (ie, carcinogenic) effects and/or to develop new drugs (eg, using the PAF pathway) that act like PUVA but have fewer side effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacillus anthracis, an organism ubiquitous in the soil and the causative agent of anthrax, utilizes multiple mechanisms to regulate secreted factors; one example is the activity of secreted proteases. One of the most abundant proteins in the culture supernates of B. anthracis is the Immune Inhibitor A1 (InhA1) protease. Here, I demonstrate that InhA1 modulates the abundance of approximately half of the proteins secreted into the culture supernates, including substrates that are known to contribute to the ability of the organism to cause virulence. For example, InhA1 cleaves the anthrax toxin proteins, PA, LF, and EF. InhA1 also targets a number of additional proteases, including Npr599, contributing to a complex proteolytic regulatory cascade with far-reaching affects on the secretome. Using an intra-tracheal mouse model of infection, I found that an inhA-null strain is attenuated in relation to the parent strain. The data indicate that reduced virulence of the inhA mutant strain may be the result of toxin protein deregulation, decreased association with macrophages, and/or the inability to degrade host antimicrobial peptides. Given the significant modulation of the secretome by InhA1, it is likely that expression of the protease is tightly regulated. To test this I examined inhA1 transcript and protein levels in the parent and various isogenic mutant strains and found that InhA1 expression is regulated by several mechanisms. First, the steady state levels of inhA1 transcript are controlled by the regulatory protein SinR, which inhibits inhA1 expression. Second, InhA1 abundance is inversely proportional to the SinR-regulated protease camelysin, indicating the post-transcriptional regulation of InhA1 by camelysin. Third, InhA1 activity is dependent on a conserved zinc binding motif, suggesting that zinc availability regulates InhA1 activity. The convergence of these regulatory mechanisms signifies the importance of tight regulation of InhA1 activity, activity that substantially affects how B. anthracis interacts with its environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tuberculosis (TB) remains a major public health burden. The immunocompetant host responds to Mycobacterium tuberculosis (MTB) infection by the formation of granulomas, which initially prevent uncontrolled bacterial proliferation and dissemination. However, increasing evidence suggests that granuloma formation promotes persistence of the organism by physically separating infected cells from effector lymphocytes and by inducing a state of non-replicating persistence in the bacilli, making them resistant to the action of antibiotics. Additionally, immune-mediated tissue destruction likely facilitates disease transmission. The granulomatous response is in part due to mycobacterial glycolipid antigens. Therefore, studies were first undertaken to determine the innate mechanisms of mycobacterial cord factor trehalose-6’6-dimycolate (TDM) on granuloma formation. Investigations using knock-out mice suggest that TNF-a is involved in the initiation of the granulomatous response, complement factor C5a generates granuloma cohesiveness, and IL-6 is necessary for maintenance of an established granulomatous responses. Studies were next performed to determine the ability of lactoferrin to modulate the immune response and pathology to mycobacterial cord factor. Lactoferrin is an iron-binding glycoprotein with immunomodulatory properties that decrease tissue damage and promote Th1 responses. Mice challenged with TDM and treated with lactoferrin had decreased size and numbers of granulomas at the peak of the granulomatous response, accompanied by increased IL-10 and TGF-b production. Finally, the ability of lactoferrin to serve as a novel therapeutic for the treatment of TB was performed by aerosol challenging mice with MTB and treating them with lactoferrin added to the drinking water. Mice given tap water had lung log10 CFUs of 7.5 ± 0.3 at week 3 post-infection. Lung CFUs were significantly decreased in mice given lactoferrin starting the day of infection (6.4 ± 0.7) and mice started therapeutically on lactoferrin at day 7 after established infection (6.5 ± 0.4). Total lung inflammation in lactoferrin treated mice was significantly decreased, with fewer areas of macrophages, increased total lymphocytes, and increased numbers of CD4+ and CD8+ cells. The lungs of lactoferrin treated mice had increased CD4+ IFN-g+ cells and IL-17 producing cells on ELISpot analysis. It is hypothesized that lactoferrin decreases bacterial burden during MTB infection by early induction of Th1 responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the last twenty years a scientific basis for the anecdotal reports of an interaction between the brain and the immune system has established neuroimmunemodulation as a new field of study in the biomedical sciences. A means for the brain to exert a regulatory influence upon various lymphoid reactions has been well established by many investigators world wide. This dissertation was geared to test the central hypothesis that the immune system, in turn, produces signals which affect CNS functions. Specifically, it is shown through several different experiments, behavioral and electrophysiologic, that the immune modifiers interferon-alpha, gamma irradiation, cyclosporine-A and muramyl-dipeptide modify brain opioid related activities. Each agent attenuates naloxone-precipitated morphine withdrawal following either systemic or intracranial injection. Each agent also has effects upon either the acute antinociceptive or hypothermic activities of morphine. Finally, each agent modifies baseline evoked electrical activity of several brain areas of awake freely-behaving rats. Later studies demonstrate that muramyl-dipeptide modifies the unit firing rate of single neurons in the brain following either systemic or localized administration within the brain. These results suggest that the immune system produces signals which affect brain activity; and thus, support the contention of a bi-directional interaction between the brain and the immune system. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most skin cancers induced in mice by Ultraviolet (UV) radiation express highly immunogenic Tumor specific transplantation antigens (TSTAs) and thus exhibit a regressor phenotype. In this study, I have used cloned genes encoding tumor antigens and oncogenes in conjunction with DNA transfection technique to isolate and characterize regressor variants from progressor tumors and vice versa. The purpose of this study was (1) to determine whether the product of a cloned gene (216) from UV-1591 tumor, which encodes a novel MHC class I antigen can function as a tumor rejection antigen when expressed on unrelated, nonantigenic, murine tumor cells or whether its function is restricted to UV-induced tumors, and (2) to determine the processes by which progressor variants derived from a regressor UV-2240 cell line by transfection with an activated Ha-ras oncogene escape the immune defenses of the normal immunocompetent host.^ To answer the first question, a spontaneously transformed, nonimmunogenic cell line (10T-1) was cotransfected with DNA from p216 and pSV2-neo plasmids. Results demonstrate that the product of a cloned TSTA gene from a UV-induced murine tumor is capable of functioning as a tumor rejection antigen when expressed on unrelated, nonantigenic tumor cells. In addition, these results indicate that this approach could be used to augment the immune response against poorly antigenic tumors.^ To answer the second question, progressor variants were isolated from a highly antigenic UV radiation-induced C3H mouse regressor fibrosarcoma cell line, UV-2240, by transfection with an activated Ha-ras oncogene. Subcutaneous injection of Ha-ras-transfected UV-2240 cells into immunocompetent C3H mice produced tumors in 4 of 36 animals. In addition, the Ha-ras-induced progressor variants produced experimental lung metastasis in both normal C3H and nude mice, although they induced more lung nodules in nude mice than in normal C3H mice. Results indicate that the progressor phenotype of the Ha-ras-induced tumor variants is not due to loss of TSTAs or MHC class I antigens. This implies that some tumors can escape the immune defenses of the normal immunocompetent host by mechanisms other than the loss of TSTAs and MHC class I antigens. (Abstract shortened with permission of author.) ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inhibition of local host immune reactions is one mechanism contributing to tumor progression. To determine if alterations in local immune functioning occur during colon carcinogenesis, a model mucosal immune response, type I hypersensitivity against the intestinal parasite Trichinella spiralis, was first characterized in normal mice and then examined during experimental colon carcinogenesis. Segments of sensitized colon mounted in Ussing chambers and challenged with T. spiralis-derived antigen resulted in a rise in short-circuit current ($\rm\Delta I\sb{sc}$) that was antigen-specific and inhibited by furosemide, implicating epithelial Cl$\sp-$ secretion as the ionic mechanism. The immune-regulated Cl$\sp-$ secretion by colonic epithelial cells required the presence of mast cells with surface IgE. Inhibition of potential anaphylactic mediators with various pharmacological agents in vitro implicated prostaglandins and leukotrienes as the principal mediators of the antigen-induced $\rm\Delta I\sb{sc}$, with 5-hydroxytryptamine also playing a role. Distal colon from immune mice fed an aspirin-containing diet (800 mg/kg powdered diet) ad libitum for 6 wk had a decreased response to antigen, confirming the major role of prostaglandins in generating the colonic I$\sb{\rm sc}$. To determine the effects of early stages of colon carcinogenesis on this mucosal immune response, mice were immunized with T. spiralis 1 day after or 8 wk prior to the first of 6 weekly injections of the procarcinogen 1,2-dimethylhydrazine (DMH). Responsiveness to antigenic challenge was suppressed in the distal colon 4-6 wk after the final injection of DMH. One injection of DMH was not sufficient to inhibit antigen responsiveness. The colonic epithelium remained sensitive to direct stimulation by exogenous Cl$\sp-$ secretagogues. Decreased antigen-induced $\rm\Delta I\sb{sc}$ in the distal colon was not due to systemic immune suppression by DMH, as the proximal colon and jejunum maintained responsiveness to antigen. Also, rejection of a secondary T. spiralis infection from the small intestine was not altered. Tumors eventually developed 25-30 wk after the final injection of DMH only in the distal portions of the colon. These results suggest that early stages of DMH-induced colon carcinogenesis manipulate the microenvironment such that mucosal immune function, as measured by immune-regulated Cl$\sp-$ secretion, is suppressed in the distal colon, but not in other regions of the gut. Future elucidation of the mechanisms by which this localized inhibition of immune-mediated ion transport occurs may provide possible clues to the microenvironmental changes necessary for tumor progression in the distal colon. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumor specific immunity is mediated by cytotoxic T lymphocytes (CTL) that recognize peptide antigen (Ag) in the context of major histocompatibility complex (MHC) class I molecules and by helper T (Th) lymphocytes that recognize peptide Ag in the context of MHC class II molecules. The purpose of this study is (1) to induce or augment the immunogenicity of nonimmunogenic or weakly immunogenic tumors by genetic modification of tumor cells, and (2) to use these genetically altered cells in cancer immunotherapy. To study this, I transfected a highly tumorigenic murine melanoma cell line (K1735) that did not express constitutively either MHC class I or II molecules with syngeneic cloned MHC class I and/or class II genes, and then determined the tumorigenicity of transfected cells in normal C3H mice. K1735 transfectants expressing either $\rm K\sp{k}$ or $\rm A\sp{k}$ molecules alone produced tumors in normal C3H mice, whereas most transfectants that expressed both molecules were rejected in normal C3H mice but produced tumors in nude mice. The rejection of K1735 transfectants expressing $\rm K\sp{k}$ and $\rm A\sp{k}$ Ag in normal C3H mice required both $\rm CD4\sp+$ and $\rm CD8\sp+$ T cells. Interestingly, the $\rm A\sp{k}$ requirement can be substituted by IL-2 because transfection of $\rm K\sp{k}$-positive/A$\sp{\rm k}$-negative K1735 cells with the IL-2 gene also resulted in abrogation of tumorigenicity in normal C3H mice but not in nude mice. In addition, 1735 $(\rm I\sp+II\sp+)$ transfected cells can function as antigen presenting cells (APC) since they could process and present native hen egg lysozyme (HEL) to HEL specific T cell hybridomas. Furthermore, the transplantation immunity induced by K1735 transfectants expressing both $\rm K\sp{k}$ and $\rm A\sp{k}$ molecules completely cross-protected mice against challenge with $\rm K\sp{k}$-positive transfectants but weakly protected them against challenge with parental K1735 cells or $\rm A\sp{k}$-positive transfectants. Finally, I demonstrated that MHC $(\rm I\sp+II\sp+)$ or $\rm K\sp{k}$-positive/IL-2-positive cells can function as anti-cancer vaccines since they can abrogate the growth of established tumors and metastasis.^ In summary, my results indicate that expression of either MHC class I or II molecule alone is insufficient to cause the rejection of K1735 melanoma in syngeneic hosts and that both molecules are necessary. In addition, my data suggest that the failure of $\rm K\sp{k}$-positive K1735 cells to induce a primary tumor-rejection response in normal C3H mice may be due to their inability to induce the helper arm of the anti-tumor immune response. Finally, the ability of MHC $(\rm I\sp+II\sp+)$ or $\rm K\sp{k}$-positive/IL-2-positive cells to prevent growth of established tumors or metastasis suggests that these cell lines can serve as potential vaccines for the immunotherapy of cancer. (Abstract shortened by UMI.) ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultraviolet B (UVB) radiation, in addition to being carcinogenic, is also immunosuppressive. Immunologically, UVB induces suppression locally, at the site of irradiation, or systemically, by inducing the production of a variety of immunosuppressive cytokines. Systemic effects include suppression of delayed-type hypersensitivity (DTH) responses to a variety of antigens (e.g. haptens, proteins, bacterial antigens, or alloantigens). One of the principal mediators of UV-induced immune suppression is the T helper-2 (Th2) cytokine interleukin-10 (IL-10); this suggests that UV irradiation induces suppression by shifting the immune response from a Th1 (cellular) to a Th2 (humoral) response. These "opposing" T helper responses are usually mutually exclusive, and polarized Th1 or Th2 responses may lead to either protection from infection or increased susceptibility to disease, depending on the infectious agent and the route of infection.^ This study examines the effects of UVB irradiation on cellular and humoral responses to Borrelia burgdorferi (Bb), the causative agent of Lyme disease (LD) in both immunization and infectious disease models; in addition, it examines the role of T cells in protection from and pathology of Bb infection. Particular emphasis is placed on the Bb-specific antibody responses following irradiation since UVB effects on humoral immunity are not fully understood. Mice were irradiated with a single dose of UV and then immunized (in complete Freund's adjuvant) or infected with Bb (intradermally at the base of the tail) in order to examine both DTH and antibody responses in both systems. UVB suppressed the Th1-associated antibodies IgG2a and IgG2b in both systems, as well as the DTH response to Bb in a dose dependent manner. Injection of anti-IL-10 antibody into UV-irradiated mice within 24 h after UV exposure restored the DTH response, as well as the Th1 antibody (IgG2a and IgG2b) response. In addition, injecting recombinant IL-10 mimicked some of the effects of UV radiation.^ Bb-specific Th1 T cell lines (BAT2.1-2.3) were generated to examine the role of T cells in Lyme borreliosis. All lines were CD4$\sp+,$ $\alpha\beta\sp+$ and proliferated specifically in response to Bb. The BAT2 cell lines not only conferred a DTH response to naive C3H recipients, but reduced the number of organisms recovered from the blood and tissues of mice infected with Bb. Furthermore, BAT2 cell lines protected mice from Bb-induced periarthritis. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spirochete Borrelia burgdorferi (Bb) is the causative agent of Lyme disease. During infection, a strong immune response is elicited towards Bb by its host; however, the organism is able to persist and to disseminate to many different tissues. The vls locus is located on the linear plasmid lp28-1, a plasmid shown to be important for virulence in the mouse model. During infection, vlsE undergoes antigenic variation through a series of gene conversions, which results in the insertion of sequences from the silent, unexpressed cassettes into the vlsE cassette. We hypothesize that this antigenic variation is important in the spirochete's ability to persist within mammals by allowing it to evade the immune system. To define the role of vls in immune evasion, the immune response against VlsE was determined by using a recombinant form of VlsE (VlsE1-His) as an antigen to screen patient sera. Lyme patients produce antibodies that recognize VlsE, and these antibodies are present throughout the course of disease. Immunization with the VlsE1-His protein provided protection against infection with Bb expressing the same variant of VlsE (VlsE1), but was only partially protective when mice were infected with organisms expressing VlsE variants; however, subsequent VlsE immunization studies yielded inconsistent protection. Successful immunizations produced different antibody reactivities to VlsE epitopes than non-protective immunizations, but the reason for this variable response is unclear. In the process of developing genetic approaches to transform infectious Bb, it was determined that the transformation barrier posed by plasmids lp25 and lp56 could be circumvented by replacing the required lp25 gene pncA. To characterize the role of vlsE in infectivity, Bb lacking lp28-1 were complemented with a shuttle plasmid containing the lp25 encoded virulence determinant pncA and vlsE. Complemented spirochetes express VlsE, but the gene does not undergo antigenic variation and infectivity in the mouse model was not restored, indicating that either antigenic variation of vlsE is necessary for survival in the mouse model or that other genes on lp28-1 are important for virulence. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Skin cancer is the most common malignancy in humans. Although highly treatable, non-melanoma skin cancer is commonly followed by other non-cutaneous malignancies. Ultraviolet radiation (UVR) acts as both tumor initiator and promoter, and also results in the suppression of specific immune responses. The systemic suppression of immune responses is initiated by DNA damage, which promotes IL-10 production, an important cytokine as anti-IL-10 can abrogate the suppression, and upregulates the pro-apoptotic proteins Fas and Fas ligand (FasL). FasL is a critical factor for UV-induced immune suppression, and the suppressor cell induced by UV expresses FasL. ^ We hypothesized that the microenvironment affects Fas/FasL interactions, and that these interactions are important to the phenomenon of UV induced immune suppression. To determine the effects of the interaction of FasL and IL-10, splenocytes isolated from C57Bl/6 mice were cultured in the presence or absence of IL-10 post-mitogenic activation. We determined that IL-10 protects from Fas-mediated apoptosis by lowering Fas sensitivity and lowering the levels of either Fas or FasL. This protection is stronger when IL-10 is given immediately after mitogenic activation, and does not increase any of the inhibitors of apoptosis studied. In vivo, splenocytes from UV-irradiated mice are resistant to Fas-mediated apoptosis and present very high levels of IL-10, lowered Fas sensitivity and lowered caspase cleavage despite higher expression of Fas and FasL than non-irradiated mice. ^ UV-induced immune suppression affects female mice preferentially, which led us to look at prolactin as a possible component of this suppression since this hormone has also been associated with increased skin carcinogenesis. The interaction of FasL and prolactin results in suppression of the delayed type hypersensitivity response to Candida albicans. This lack of response depends on FasL as is not seen in gld mice. Similar to UV-induced immune suppression, the suppression is caused by a Th2 deviation, and correlates with a significant increase in Fas expression. In the presence of UV, the effects of prolactin seemed to be protective, and UV actually restores the DTH response.^ Taken together, these observations suggest that the microenvironment dictates the outcome of the interaction of FasL with Fas going from promoting apoptosis to preventing apoptosis or mediating a Th2 deviation and suppression of a Th1 response. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exposure to UVB radiation induces local and systemic immune suppression, evidenced by inhibition of the contact hypersensitivity response (CHS). Epidermal dendritic cells, the primary antigen presenting cells responsible for the induction of CHS, are profoundly altered in phenotype and function by UVB exposure and possess UV-specific DNA damage upon migrating to skin-draining lymph nodes. Expression of the proapoptotic protein FasL has been demonstrated in both skin and lymph node cells following UVB exposure. Additionally, functional FasL expression has recently been demonstrated to be required in the phenomenon of UV-induced immune suppression. To test the hypothesis that FasL expression by DNA-damaged Langerhans cells migrating to the skin-draining lymph nodes is a crucial event in the generation of this phenomenon, mice were given a single 5KJ/m2 UV-B exposure and sensitized to 0.5% FITC through the exposed area. Dendritic cells (DC) harvested from skin-draining lymph nodes (DLN) 18 hours following sensitization by magnetic CD11c-conjugated microbeads expressed high levels of Iab, CD80 and CD86, DEC-205 and bore the FITC hapten, suggesting epidermal origin. Radioimmunoassay of UV-specific DNA damage showed that DC contained the vast majority of cyclobutane pyrimidine dimers (CPDs) found in the DLN after UVB and exhibited increased FasL mRNA expression, a result which correlated with greatly increased FasL-mediated cytotoxicity. The ability of DCs to transfer sensitization to naïve hosts was lost following UVB exposure, a phenomenon which required DC FasL expression, and was completely reversed by cutaneous DNA repair. Collectively, these results demonstrate the central importance of DNA damage-induced FasL expression on migrating dendritic cells in mediating UV-induced suppression of contact hypersensitivity. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Imatinib mesylate (IM) and Interferon-alfa (IFN-α) are currently the two most efficacious therapies for patients with chronic myelogenous leukemia (CML). IFN-α induces durable complete cytogentic remission (CCR) in about 25% of CML patients whereas IM, a tyrosine kinase inhibitor, induces CCR in 50% of patients who are resistant to IFN-α and in 75% of patients in early chronic phase of CML. However, the detection of minimal residual disease without clinical relapse suggests that host immune surveillance plays a very important role in controlling the progression of disease. ^ T lymphocytes and dendritic cells (DC) are the two most crucial players in the immune system. In my study, we focused on the effects of treatment with either IM or IFN-α on the functions of both DC and T cells, as exemplified by the ability of DC to present antigen to T cells and activated T cells to synthesize cytokines. Our studies show that cytokine production by T cells activated through the T-cell receptor (TCR) was significantly lower in CML patients treated with IM, but not with IFN-α, when compared with activated T cells of control subjects. Suppression of T cell function by IM albeit transient and reversible, was through the downregulation of the phosphorylation of Zap-70, Lck, and LAT. ^ Our data also show that the myeloid DC (DC1) and the plasmacytoid DC (DC2) are lower in chronic phase CML. Whereas neither therapy restored the level of DC2 to normal levels, the number of DC1 was normalized by either therapy. However, only IFN-α, and not IM, restored DC2 function to normal, as exemplified by the production of IFN-α in response to exposure to live influenza virus. Moreover, in vitro differentiation and maturation of DC1 from monocyte precursors in patients receiving either therapy was not normal and was reflected in their ability to present antigen to autologous T cells. ^ In summary, we report that there are differences in immune responses of CML patients treated with IM or IFN-α that may be the result of long-term effects on the host immune system by the individual therapy. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ultraviolet radiation (UVR) present in sunlight is the primary cause of nonmelanoma skin cancer and has been implicated in the development of cutaneous malignant melanoma. Ultraviolet radiation also suppresses the immune response. In the majority of studies investigating the mechanisms regulating UV-induced immune suppression, UV is used to suppress the induction of immune responses. Equally important, is the ability of UVR to suppress established immune responses, such as the recall reaction in humans, which protects against microbial infections. We established a murine model to help elucidate the immunological mechanisms governing UV-induced suppression of the elicitation of immune responses. 80 kJ/m2 of UVR nine days after sensitization consistently suppressed the elicitation of delayed type hypersensitivity reaction to C. albicans . We found ultraviolet A (320±400 nm) radiation was as effective as solar-simulated ultraviolet A + B (290±400 nm) in suppressing the elicitation of an established immune response. The mechanisms involved in UV-induced suppression of the induction & elicitation of the immune response are similar. For example, mice irradiated with UV after immunization generated antigen-specific T suppressor cells. Injection of monoclonal antibodies to IL-10 or recombinant IL-12 immediately after exposure to UVR blocked immune suppression. Liposomes containing bacteriophage T4N5 to the skin of mice also prevented immune suppression, demonstrating an essential role for ultraviolet-induced DNA damage in the suppression of established immune reactions. ^ In addition to damaging DNA, UV initiates immune suppression through the isomerization of urocanic acid in the epidermis. Here we provide evidence that cis-UCA induces systemic immunosuppression via the serotonin (5-hydroxyyryptamine; 5-HT) receptor. Biochemical and immunological analysis indicate that cis-UCA binds to, and activates, the serotonin receptor. Moreover, serotonin specific antibodies block UV- and/or cis-UCA-induced immune suppression. Our findings identify cis-UCA as novel serotonin receptor ligand and indicate that serotonin receptor engagement can activate immune suppression. Cumulatively, our data suggest that similar immune regulatory mechanisms are activated regardless of whether we expose mice to solar-simulated UV (UVA + UVB) radiation or UVA only, and that ultraviolet radiation activates similar immunologic pathways to suppress the induction or the elicitation of the immune response. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spirochete Treponema pallidum subsp. pallidum is the causative agent of syphilis, a sexually transmitted disease with an estimated 12 million new cases per year worldwide. There is no vaccine currently available for the prevention of syphilis. In the present study, the T. pallidum hypothetical protein TP0693 was examined to determine its cellular location, and its potential for use as a vaccine candidate and immunodiagnostic for syphilis. TP0693 was demonstrated to be strongly reactive with sera from rabbits infected experimentally with T. pallidum for >25 days. Results from proteinase K digestion, immunofluorescence and immunoelectron microscopy were consistent with outer surface localization of TP0693. Serum reactivity against TP0693 was detected in only 68% of syphilis patients, which does not support its use as an immunodiagnostic for syphilis. Immunization of rabbits with TP0693 or three other outer membrane candidates did not alter the course of lesion development atter T. pallidum inoculation. We also examined the T. pallidum proteome by two-dimensional gel electrophoresis coupled with mass spectrometry analysis and immunoblotting. This approach resulted in the identification of 95 unique polypeptides, several of which were reactive with sera from infected rabbits and syphilis patients. The analyses described here enabled us to identify antigens potentially useful as vaccine candidates or diagnostic markers, and may provide insight into host-pathogen interactions during T. pallidum infection. ^